ИССЛЕДОВАНИЯ АСТРОКЛИМАТА В СПЕЦИАЛЬНОЙ АСТРОФИЗИЧЕСКОЙ ОБСЕРВАТОРИИ РАН

В.В. Носов¹, В.П. Лукин¹, Е.В. Носов¹, А.В. Торгаев¹, В.Л. Афанасьев², Ю.Ю. Балега², В.В. Власюк², В.Е. Панчук², Г.В. Якопов²

> ¹Институт оптики атмосферы им. В.Е. Зуева СО РАН 634055, г. Томск, пл. Академика Зуева, 1 ²Специальная астрофизическая обсерватория РАН 369167, Нижний Архыз, Зеленчукский район, Карачаево-Черкесская республика

> > Поступила в редакцию 14 марта 2018 г.

Представлены результаты измерений характеристик астроклимата в Специальной астрофизической обсерватории РАН (САО, Северный Кавказ) в 2012 и 2016 гг. Экспериментальные результаты получены из долговременных рядов наблюдений дневного и астроклимата в САО. Установлено присутствие над ночного территорией САО неколмогоровской когерентной турбулентности, в которой улучшается качество изображений телескопов. Выяснено влияние типа подстилающей поверхности и направления скорости ветра на режим возникновения когерентной турбулентности. Установлено, что причинами ее появления являются горный рельеф и неравномерность нагрева подстилающей поверхности. Экспериментально исследовано распределение скоростей движений воздуха в объеме подкупольного пространства Большого телескопа азимутального (БТА). Проведено численное моделирование движений воздушных масс в подкупольном пространстве БТА для анализа влияния температурного режима и формы конструкций. Решения краевой задачи подтверждают наличие экспериментально зарегистрированной вихревой структуры с вертикальной осью вращения. Причинами её возникновения являются температурные градиенты подкупольных поверхностей.

Ключевые слова: телескоп, астроклимат, турбулентность, когерентная структура, уравнения гидродинамики

Введение

Под астроклиматом обычно понимается совокупность оптических свойств атмосферы, определяющая эффективность астрономических наблюдений. Поэтому астроклимат определяется климатом и рельефом географического региона, где расположен астрономический приемник. В общем случае астроклимат включает достаточно много составляющих, например, молекулярное и аэрозольное рассеяние и поглощение излучения, регулярная рефракция, турбулентность и др. Однако в условиях, при которых обычно проводятся астрономические наблюдения (слабо замутненная безоблачная атмосфера), одной из основных составляющих астроклимата, влияющих на качество астрономических изображений, становится атмосферная турбулентность.

Как известно [1], исследования астроклимата Северного Кавказа, включая район размещения Специальной астрофизической обсерватории РАН (САО РАН), ведутся уже более

полувека, в том числе (с 1956 г.) с целью выбора места установки Большого телескопа азимутального (БТА). Авторами настоящей работы продолжены исследования астроклимата в САО РАН. Представлены результаты экспериментальных измерений, выполненных в 2012 и 2016 гг.

Проведены измерения мобильными ультразвуковыми метеосистемами суточного хода характеристик астроклимата на 20-метровой метеорологической вышке на площадке вблизи БТА. Установлено присутствие над территорией САО когерентной турбулентности, в которой улучшается качество астрономических изображений телескопов. Причинами ее появления в районе БТА являются неравномерность нагрева подстилающей поверхности и (имеющие протяженность поперек Кавказского хребта) ущелья, создающие «русло» для воздушных масс. Общий уровень зарегистрированной интенсивности турбулентности в ночное наблюдательное время на площадке БТА в среднем низок.

Выполнены измерения астроклимата в подкупольном пространстве БТА, в котором обнаружена интенсивность турбулентности, сравнимая с наружной. Установлено наличие "шахматной структуры" распределения параметров турбулентности под куполом. Зарегистрирована экспериментальная картина движений воздушных подкупольных потоков и выявлено присутствие вихревой когерентной структуры, возникающей вследствие градиента температуры в 2–3 градуса по всей высоте подкупольного пространства.

Проведено также численное моделирование движений воздушных масс в подкупольном пространстве БТА для анализа влияния температурного режима и формы конструкций. Численные решения соответствующих краевых задач подтверждают наличие экспериментально зарегистрированной вихревой структуры с вертикальной осью вращения. Причинами её возникновения являются температурные градиенты подкупольных поверхностей.

2 Измерения астроклимата над территорией САО РАН

В работе представлены результаты измерений суточного хода (долговременные ряды наблюдений) характеристик астроклимата на метеорологической вышке на площадке вблизи башни телескопа БТА. Обсерватория САО находится на вершине горы на высоте около 2070 м над уровнем моря. Проведено исследование локальной структуры атмосферной турбулентности, включающей когерентную и колмогоровскую турбулентность. Обнаруженные закономерности согласуются с результатами измерений авторов в других горных обсерваториях (за более чем десятилетний период в различных сезонных и климатических условиях, [2]).

Для регистрации параметров атмосферной турбулентности с целью выяснения условий возникновения областей когерентной турбулентности над территорией обсерватории использовались мобильные ультразвуковые метеосистемы «АМК-03» в 2012 г. и «Метео-2» в 2016 г. [2]. Метеосистемы были установлены на 20-метровой метеорологической вышке, находящейся на площадке вблизи башни телескопа в 24 м к юго-западу от стены БТА на краю ущелья. Высота центров измерительных головок над подстилающей поверхностью составила 22.5 м. Измерения проводились с 30 июля по 7 августа 2016 г. в стабильных условиях: при ясном небе утром и днем и, обычно, дождем после 17 ч вечера. Средняя температура T в измерениях на вышке с 01 по 04 августа (во время одновременных подкупольных измерений) была достаточно стабильна и изменялась от 11° С до 15° С, тогда как в измерениях в 2012 г. с 26 октября по 01 ноября колебания температуры находились в более широком интервале от 5° С до 13° С. Зарегистрированные данные наших измерений в САО в 2012 и 2016 гг. согласуются с результатами предыдущих многолетних измерений в САО на метеовышке и внутри БТА (см., например, [1]).

В измерениях на метеовышке в 2016 г. подтвердилось зарегистрированное ранее в 2012 г. присутствие над территорией САО когерентной турбулентности, при которой улучшается качество изображения [2-6]. Спектры флуктуаций температуры в большинстве случаев имеют 8/3-наклон на значительном участке инерционного интервала, имеют 'ступеньки' и изрезаны, что свидетельствует о смешивании нескольких когерентных структур (рис. 1) [2, 3].

Причиной появления когерентной турбулентности над территорией САО является горный

рельеф местности. К югу от горы БТА (рис. 2) находится гора Пастухова (высота 2733 м над уровнем моря), которая выше площадки обсерватории (высота около 2070 м). К северо-востоку от БТА имеется ровная площадка протяженностью около 500 м, которая заканчивается понижением рельефа к п. Нижний Архыз примерно на 1 км и, затем, более пологим спуском в долину Ставропольского края (до 200 м). В направлении на юго-запад БТА находится на краю глубокого (около 800 м) ущелья реки Большой Зеленчук. В 3 км юго-восточнее БТА начинается ущелье р. Маруха.

Рис. 1. Временной частотный спектр флуктуаций температуры *W_T* на метеовышке. 07.08.2016

Как известно [7], при обтекании гор воздушным потоком при значительных скоростях ветра на подветренной стороне горного хребта образуется стабильный вихрь (когерентная структура), размеры которого по данным экспериментальных исследований могут достигать нескольких сотен метров. Такие ветра обычно определяются движениями крупномасштабных воздушных потоков выше слоя трения. Вихри могут отрываться от хребта и переноситься по воздушному потоку. При меньших скоростях ветра в приземном слое проявляется влияние на воздушные потоки более мелких особенностей деталей рельефа.

Ущелья и реки в районе горы БТА имеют протяженность вдоль линии с юго-запада на северо-восток поперек Кавказского хребта, т.е. создают «русло» для воздушных масс в приземном слое атмосферы. Потоки воздуха на небольших высотах испытывают влияние рельефа и могут иметь соответствующее направление. Юго-западнее находится также Черное море, имеющее другую температуру поверхности, чем горы. Поскольку БТА расположен на противоположном морю склоне Северного Кавказа, то направление ветра здесь может оказаться противоположным бризовым ветрам на берегу моря. Причиной возникающих ветров является температурный контраст (разность температур) между горным хребтом Кавказа и долиной Ставропольского края. Летом горы ночью остывают быстрее долины, а днем при ясном небе северо-восточный склон гор Кавказа быстрее нагревается. Возникающий вдоль югозападного направления температурный градиент приводит к появлению анабатических (восходящих) днем и катабатических (нисходящих) ночью ветров, аналогичных бризовым. Подобный механизм горно-долинной циркуляции для района САО описан в статье [1]. Зимой, в присутствии снежного покрова, более существенным, вероятно, становится влияние незамерзающего Черного моря. Таким образом, в районе горы БТА имеется выделенное направление среднего ветра: (юго-запад)-(северо-восток).

В наших измерениях в 2012 г., проводившихся на метеовышке возле БТА,

зарегистрировано же выделенное такое направление ветра *D* вдоль линии (юго-запад)-(северо-восток), *D* – отсчитываемый от севера по часовой стрелке (через восток) осредненный направления ветра. VГОЛ горизонтального Ночью ветер имел преимущественно направление $D = 200^{\circ} - 270^{\circ}$ со стороны ущелья реки Большой Зеленчук, днем ветер часто менялся на противоположное направление D =10°-50°, разброс по остальным направлениям

Рис. 2. Вертикальный профиль поверхности по линии направления преимущественных ветров (Google Earth, [8])

незначительный. В наших измерениях 2016 г. на метеовышке получены следующие данные: ночь (22:00–05:00) – в основном юго-западный ветер ($D = 220-280^{\circ}$), день (07:00–18:00) – средний ветер с севера (из долины Ставропольского края), утром и вечером (05:00–08:00 и 18:00–22:00) происходил переходный процесс, во время которого направление среднего ветра значительно менялось. В ночное время ветер также часто направлен с юго-востока со стороны ущелья р. Маруха ($D = 110-140^{\circ}$).

При юго-западном и юго-восточном ветре со стороны ущелий рек Большой Зеленчук и Маруха соответственно над БТА может образоваться вихревая когерентная структура [2, 3, 6, 9]. Так, при таких направлениях ветра, в ночных измерениях 2012 года частотные спектры флуктуаций температуры имеют 8/3-наклон в инерционном интервале, что свидетельствует о присутствии когерентных структур (рис. 1, [2–6]). Ночью при юго-западном ветре в 90 % измерений (при юго-восточном – в 75 %) частотные спектры оказались когерентными. Тогда как днем, при противоположном ветре со стороны долины Ставропольского края, несмотря на горный рельеф вблизи БТА, когерентная турбулентность зарегистрирована уже только в 50 % измерений. В остальных случаях зарегистрированы колмогоровские спектры.

Средняя скорость ветра днем из Ставропольской долины (с севера) за время наблюдений V = 2-4 м/с, ночью с гор V = 1-2 м/с. Такие невысокие средние скорости ветра говорят о местном характере возникающих ветров, определяемых локальными температурными градиентами. Вертикальные составляющие скорости ветра довольно велики до $w = \pm 1.5$ м/с. Поэтому ветровая тень (турбулентный след) г. Пастухова, возможно, не играет значительной роли, т.к. ветер формируется продолжительным горным склоном (более 2 км) и направлен вдоль склона вверх или вниз. Кроме того, преимущественные ветра в наших измерениях были направлены ночью не с юга, где находится г. Пастухова, а с юго-запада со стороны глубокого ущелья реки Большой Зеленчук. Средние значения структурной характеристики показателя преломления (интенсивность турбулентности) C_n^2 в основном менее $C_n^2 = 1.5 \cdot 10^{-15}$ см^{-2/3}, максимальное зарегистрированное значение $C_n^2 = 3,3 \cdot 10^{-14} \text{ см}^{-2/3}$. Значения C_n^2 в среднем увеличиваются с увеличением скорости ветра V и больше зависят от величины V, чем от времени суток. Как отмечено выше, в ночное время летом скорость ветра невелика (в среднем не выше значений V = 1-3 м/с). Поэтому общий уровень флуктуаций температуры на площадке БТА в наблюдательное время низок (пониженные значения C_n^2), что обеспечивает качество астрономических изображений в наблюдениях на БТА.

Отметим, что в измерениях 02.08.2016 г. в течение часа с 19:40 до 20:30 зарегистрированы высокие усредненные за 2 мин скорости юго-восточного ($\langle D \rangle = 128^{\circ}$) ветра до V = 10 м/с. Происходил вечерний переходный процесс смены направления ветра, за рассматриваемый час ветер менялся с восточного на южный до направления со стороны горы Пастухова. При этом произошло снижение значений структурной характеристики C_n^2 со средних за день $C_n^2 \approx 3 \cdot 10^{-16}$ см^{-2/3} до в 2–3 раза меньших значений вплоть до $C_n^2 = 3.7 \cdot 10^{-17}$ см^{-2/3}.

3 Астроклимат в подкупольном пространстве БТА

В данном разделе приведены результаты экспериментальных исследований, проведенных в 2012 г. и в 2016 г. локальной структуры турбулентности и других параметров астроклимата в подкупольном пространстве БТА. Измерения проведены при закрытом и открытом куполе в целях анализа влияния технологических конструкций, температурного режима элементов телескопа и купола на качество изображения.

3.1 Основные результаты в 2012 г.

Первичные измерения выполнены нами на БТА ранее осенью 2012 г (с 22 по 31 октября). Для измерений использовалась ультразвуковая метеостанция «Метео-2». Измерения всему объему произведены В разных точках ПО специализированного помещения подкупольного пространства БТА с использованием ультразвуковой метеостанции, крепившейся на различных радиусах (удалениях от центра вращения телескопа) при помощи кронштейнов к конструкциям купола и телескопа, ориентируемого под различными азимутальными и зенитными углами. Результаты измерений 2012 г. показали, что в подкупольном пространстве БТА наблюдается одна крупная когерентная структура (рис.3, [2, 3, 9]). В каждой точке измерения частотные спектры флуктуаций температуры в инерционном

интервале имеют 8/3 - степенное убывание (рис.4). Спектры становятся колмогоровскими (5/3 - степенное убывание) только при измерениях непосредственно в открытой щели телескопа. Исследование распределения скоростей внутри структуры показывает, что возникающую когерентную структуру можно интерпретировать как аналог ячейки Бенара с двумя крупными

вихрями, наибольший диаметр каждого из которых около 16 м (рис. 3). Ячейка распадается на более мелкие вихри. Диаметр вихря с наибольшей энергией при этом составляет около 2 м. Впервые одна («чистая») когерентная структура без примесей других структур наблюдалась нами на Байкале в спектрографе Большого солнечного вакуумного телескопа (БСВТ) в 2006 г. Наши результаты измерений на БТА также показывают существование одной чистой когерентной структуры, но уже с другими параметрами. Параметры когерентной структуры на БТА существенно отличаются от параметров когерентной структуры на БСВТ. Например, средняя скорость движения воздуха внутри структуры на БТА в 2012 г. достигала 1 м/с, а на БСВТ – 0.1 м/с. Обнаружена шахматная структура распределения средней температуры в подкупольном пространстве БТА. При открытом куполе перед главным зеркалом БТА наблюдается максимум C_n^2 .

3.2 Основные результаты в 2016 г.

Измерения параметров подкупольного астроклимата БТА при закрытом и открытом куполе проведены с 01.08.2016 г. по 04.08.2016 г. [9]. Измерения, аналогичные проведенным нами осенью 2012 г., произведены в точках по всему объему подкупольного пространства БТА с использованием ультразвуковой метеостанции АМК–03, крепившейся на различных радиусах от центра вращения: на верхнем торце кабины наблюдателя [10] на рамке (длина рамки 1.2 м от

торца кабины; высоты измерений h = 16-31 м, рис. 8) и на штанге телескопа (h = 7-19 м, рис. 6). При этом телескоп поворачивали по азимуту по четырем сторонам света и в четырех зенитных углах $z = 5^{\circ}$, 25°, 45°, 70° для каждого направления. Также для измерений температуры и размеров конструкций телескопа и купола использовались лазерные термометр и дальномер. Одновременно с подкупольными измерениями состояние атмосферы вне телескопа контролировалось ультразвуковой метеосистемой "Метео-2", установленной на 20-метровой метеорологической вышке на площадке вблизи башни БТА.

Измерения показали, что средняя температура воздуха *T* растет от пола до верха купола на 2–3 градуса (по высоте). Структурная характеристика показателя преломления C_n^2 (интенсивность турбулентности) растет с высотой и к центру от $C_n^2 = 6,64 \cdot 10^{-16}$ см^{-2/3} до $C_n^2 = 1,1 \cdot 10^{-15}$ см^{-2/3}. Также значение C_n^2 возрастает в направлении на север вблизи щели купола. Скорость среднего ветра при закрытом куполе достигает 0.1 м/с. Все зарегистрированные спектры флуктуаций температуры при закрытом куполе соответствуют когерентной турбулентности ($W_T \sim f^{-8/3}$, [2–6], рис. 4, 14).

По результатам измерений по объему подкупольного пространства БТА восстановлена экспериментальная картина движений воздушных потоков, подтверждено присутствие вихревой когерентной структуры. В целом, зарегистрированные воздушные потоки образуют на измерительных высотных уровнях h = 7-19 м осесимметричный вихрь с вертикальной осью, вращающийся по часовой стрелке (при виде сверху) (рис. 5, 6). На этих высотах в центре подкупольного помещения воздух поднимается вверх, а ближе к стенкам купола закручивается вниз. Однако реальные движения во всем объеме подкупольного пространства высотой H = 31м сложнее по сравнению с экспериментально зарегистрированной картиной потоков на указанных высотах. (см. также результаты численного моделирования, п. 4). Зарегистрированная летом 2016 г. картина подкупольных движений воздуха отличается от картины осени 2012 г. из-за различных метеоситуаций во время этих измерений.

При открытой щели купола измерения проведены с закрепленной на вернем торце кабины наблюдателя метеосистемой "АМК–03" в направлениях на щель и с обеих сторон от щели (в направлениях на север и запад, рис. 7). На рис. 7 цифрами показана температура воздуха *T* в

точках измерений. Если при закрытом куполе температура росла с увеличением высоты (на 2–3 градуса от пола до купола), то при открытом выровнялась по высоте ($T \approx 19^{\circ}$ C). После полного открытия купола значения C_n^2 на оптической оси телескопа резко (на порядок) выросли в верхних точках измерения (h = 28-30 м). Скорость ветра под куполом после открытия щели также выросла, достигнув в отдельных точках 0.8 м/с. Во время переходного процесса (выравнивания внешней и подкупольной температуры воздуха) зарегистрированные спектры флуктуаций температуры при измерениях вблизи открытой щели оказались колмогоровскими. Это соответствует теоретическим представлениям о перемешивании разных когерентных структур [2, 3], которое дает колмогоровскую турбулентность. В точках, ближе к центру купола и зеркалу, спектры остались соответствующими когерентной турбулентности. В измерениях 2012 г., проведенных уже после завершения переходного процесса выравнивания температуры, колмогоровская турбулентность зарегистрирована только в одной точке в верхней части открытой щели купола.

Проведены измерения вертикальных профилей параметров астроклимата в закрытом подкупольном помещении до высоты 27 м (рис. 8, цифрами показана температура воздуха в точках измерений). Измерительная головка метеостанции АМК-03 была закреплена на кранбалке, способной перемещать АМК-03 по высоте в противоположной щели половине подкупольного пространства и непосредственно над зеркалом. При измерениях вертикального профиля купол был развернут в положение для регламентных (ремонтных) работ так, что щель купола находилась в направлении между севером и западом (под 45° от обоих). Телескоп имел направление на технологический балкон на куполе. Зарегистрированная температура воздуха в точках над зеркалом телескопа в среднем на 0.5 градуса выше, чем над контрольной точкой на 5 м юго-восточнее. Значения структурной характеристики C_n^2 в точках измерений вблизи зеркала и над ним сравнимы по величине с максимальными значениями C_n^2 вне купола. Интенсивность турбулентности C_n^2 на высотах h = 16 м – 22 м в измерениях над зеркалом (и на высотах h = 8.5 м - 14.5 м юго-восточнее зеркала) в 2 раза больше ($< C_n^2 > = 1.5 \cdot 10^{-15} \text{ см}^{-2/3}$), чем на высотах ниже и выше. Это подтверждает наличие шахматной структуры распределения средней температуры и структурной характеристики C_n^2 по объему купола БТА, подобной зарегистрированной в наших измерениях в БТА в 2012 г.

4 Численное моделирование движения воздуха под куполом БТА

Для теоретического исследования структуры турбулентных движений воздушных масс в замкнутом помещении подкупольного пространства БТА (без обмена веществом среды через границы) и анализа влияния температурного режима купола и конструкций телескопа на движение воздуха, в дополнение к экспериментальным исследованиям проведено численное моделирование движений воздушных масс путём численного решения краевых задач для уравнений гидродинамики (уравнений Навье–Стокса) с граничными и начальными условиями из экспериментально измеренных данных для дневных измерений 03.08.2016 г., аналогично выполненным работам [11–14].

Масштабная программно-численная модель подкупольного пространства БТА (рис. 9) включает в себя следующие компоненты [10]: в верхней части – купол (полусфера сверху и цилиндр снизу); в средней части – многоуровневый кольцевой балкон; в нижней части – специализированных встроенных помещений внешние контуры (подготовительное, алюминирования, грузоподъёмника, ЦПУ и т.д.). В центральной части модели воспроизведена конструкция самого оптического инструмента, состоящая из монтировки телескопа (платформа, стойки, лифты, балконы с кабинами) и трубы телескопа (средник, трубчатые конструкции из стрежней-штанг, верхнее кольцо, кабина наблюдателя и стакан первичного фокуса без растяжек, главное зеркало с закрытыми крышками в оправе на нижнем кольце). Указанные компоненты модели исполнены в масштабе аналитически и реализованы программно с использованием методов конструктивной геометрии: сложные объекты образованы совокупностью простых объектов с помощью булевых операций над ними (соединение, пересечение, разность) и преобразований поворота. Управляемая программно реализация модели позволяет независимо варьировать как азимутальный угол положения монтировки телескопа в диапазоне 0-360°, так и зенитный угол наведения трубы телескопа в пределах 0-90°, что в совокупности делает возможным воспроизвести требуемое положение телескопа в целом.

Модель подкупольного пространства БТА создана на основании данных натурных измерений габаритов помещения подкупольного пространства, встроенных специализированных помещений, конструкций телескопа и оборудования с помощью лазерного дальномера и с использованием сборочных чертежей. Дополнительно проведены измерения температуры внутренних поверхностей купола, чистого пола, внешних поверхностей встроенных спецпомещений и конструкций самого телескопа с помощью лазерного инфракрасного термометра.

Для проведения численного моделирования структуры движений воздуха в подкупольном пространстве сформулирована следующая краевая задача. Модель замкнутого помещения подкупольного пространства (рис. 9) имеет следующие размеры: радиус внутренней полусферической части купола 21.6 м, внутренняя высота помещения от уровня чистого пола 31 м. В нижней части подкупольного пространства встроены спецпомещения сложной

геометрии.

Рис. 9. Объёмная масштабная модель помещения подкупольного пространства БТА, купол показан частично: а – Азимутальный угол монтировки телескопа 270° (на запад), зенитный угол трубы телескопа 60°, вид с юга; б – Азимутальный угол 225° (на юго-запад), зенитный угол 30°, вид с северо-запада

Граничные и начальные условия Дирихле: температуры поверхностей и конструкций – использованы экспериментально измеренные значения; нулевые скорости на границах твёрдых тел; давление – использованы экспериментально измеренные значения. Помещение подкупольного пространства заполнено подобной воздуху средой. В помещении присутствуют конструкции телескопа с варьируемыми азимутальными и зенитными углами наведения. Для численного решения краевой задачи нами использовано свободное программное обеспечение в открытых исходных кодах для решения уравнений Навье–Стокса [15].

В результате решения поставленной краевой задачи получена картина движения воздушной среды в модели помещения подкупольного пространства в параметрах векторного поля скорости и скалярных полей температуры и давления (рис. 10–13).

Рис. 10. Вихревая структура под куполом БТА. Момент времени моделирования 01:56:13. Азимутальный угол монтировки 270°, зенитный угол трубы телескопа 70°. Ближняя часть купола не показана, вид с севера: а – Линии тока, б – Горизонтальное сечение поля скоростей воздушных потоков на высоте 17 м

На рис. 10а представлен общий вид вихревой структуры в модели БТА: линии тока в форме веретенообразного вихря визуализируют поле скоростей воздушных масс во всём объёме модели. Рис. 10б детализирует структуру поля скоростей, указывая направления движений воздушных потоков: на выбранной высоте воздушные массы двигаются по часовой

стрелке при виде сверху. Рис. 11 отображает распределение скоростей воздушных потоков в плоскости горизонтального сечения на выбранной высоте: более тёмные оттенки соответствуют большим значениям скорости. Можно отметить, что скорость движения близка к минимальной в центре вихревой структуры ("глаз" вихря), далее она достаточно быстро нарастает до максимальных значений ("стена" вихря) и постепенно спадает к периферии области.

Рис. 11. Горизонтальное сечение поля скоростей воздушных потоков, м/с. Момент времени моделирования 01:48:53. Сечение на высоте 17 м. Зенитный угол трубы телескопа 70°. Показан фрагмент верхнего кольца, штанг и кабины наблюдателя. Вид с севера-запада

Рис. 12 и рис. 13 иллюстрируют структуру поля завихренности воздушных потоков в подкупольном пространстве БТА. Горизонтальное сечение поля вертикальной компоненты завихренности на рис. 12 даёт возможность оценить влияние различных конструкционных элементов на движение воздушных масс а также направления вращений в горизонтальной плоскости несущего вихря и локальных возмущений на выбранной высоте. Изоскалярная поверхность модуля завихренности воздушных потоков на рис. 13 позволяет увидеть вихревой след от элементов конструкций телескопа в объёме и динамике.

Рис. 12. Горизонтальное сечение поля вертикальной компоненты завихренности воздушной среды (*rot U*)_y, с⁻¹. Описание то же, что на рис. 11

На рис. 12 и рис. 13 можно наблюдать вихревой след от элементов конструкций трубы телескопа. Как видно из обоих рисунков, усиление завихренности отмечается между верхними штангами, а также в области верхнего кольца, стакана первичного фокуса и кабины наблюдателя. Более тёмные оттенки на рис. 12 соответствуют отрицательным значениям и вращению по часовой стрелке при виде сверху; светлые оттенки – положительным значениям и

вращению против часовой стрелки. На рис. 12 можно отметить "дорожку Кармана", как вихревой след от верхнего кольца трубы телескопа в набегающем воздушном потоке: поочередно отрывающиеся вихри противоположных направлений вращения формируют по обе стороны за конструкцией кольца две цепочки, увлекаемые доминирующим несущим вихрем.

Рис. 13. Изоскалярная поверхность модуля завихренности *rot U* воздушной среды в области верхнего кольца и верхних штанг. Момент времени моделирования 01:08:20. Зенитный угол трубы телескопа 70°. Конструкции телескопа снизу не показаны. Вид с юго-востока сверху

Из рис. 10–13 видно, что под куполом БТА формируется веретенообразная вихревая структура с вертикальной осью вращения. При меньших зенитных углах, на которых обычно проводится наблюдение, влияние вихревого следа конструкций телескопа распространится в том числе и на оптическую трассу.

Сравнение данных рис. 5, 6 и рис. 10, 11 позволяет сделать вывод, что картина движения воздушной среды, полученная в результате численного моделирования (рис. 10, 11), практически совпадает с экспериментально зарегистрированной нами приближённой картиной осреднённых движений воздуха в подкупольном пространстве БТА (рис. 5, 6).

Результаты численного моделирования подтверждают зафиксированное в эксперименте возникновение под куполом БТА вихревой структуры с вертикальной осью вращения [9, 11]. Причинами её появления являются температурные градиенты поверхностей купола, встроенных спецпомещений и конструкций телескопа, обусловленные неравномерностью их нагрева. Веретенообразная форма и положение оси вращения вихревой структуры совместно определены геометрией помещения подкупольного пространства, задающей границы для движения воздушных масс, и расположением участков нагрева на границах объёма.

На рис. 14 представлены временные частотные спектры флуктуаций температуры. В представленных случаях в экспериментальном спектре наблюдается протяжённый инерционный интервал с 8/3-степенной зависимостью, что соответствует когерентной турбулентности; в теоретическом спектре инерционный интервал описывается 12/3-степенной зависимостью, что также соответствует когерентной турбулентности. Причиной более быстрого

спада расчётного спектра в инерционном интервале является отсутствие мелкомасштабных вихрей в составе вихревой структуры. Конечный размер расчётной сетки в численном моделировании обуславливает максимальный разрешаемый размер вихря, который превышает размер самых мелких реальных вихрей.

Рис. 14. Временной частотный спектр флуктуаций температуры W_T в подкупольном пространстве БТА в моделировании. В верхнем правом углу – временной частотный спектр флуктуаций температуры W_T в эксперименте

Результаты проведённого нами ранее численного моделирования с использованием данных измерений 2012 г. показали [11], что в замкнутом воздушном объёме БТА наблюдаются два крупных вихря с вертикальными осями вращения (когерентные структуры, топологические когерентный порождает когерентную солитоны), распад которых турбулентность. Результирующая картина подкупольных движений воздуха лета 2016 г. отличается от картины осени 2012 г. из-за различных метеоситуаций, сопутствовавших экспериментам. В то же время в развитии картин движения 2012 и 2016 гг. можно отметить некоторые общие черты, а именно, появление в определённый момент времени двух вихрей с вертикальными осями противоположных направлений вращения. При этом осенняя метеоситуация 2012 г. стабилизировала картину в виде двух вихревых структур, в то время как летняя метеоситуация 2016 г. привела к дальнейшему развитию картины, где одна вихревая структура, являясь доминирующей модой, поглощает энергию второй, приводя в дальнейшем к её вырождению.

Рис. 15. То же, что и на рис. 12, $(rot U)_y$, c^{-1} . Момент времени моделирования 01:23:20.

Стрелки – горизонтальное сечение поля скоростей. Масштаб цветовой шкалы изменен для усиления контрастности

Процесс поглощения второй вихревой структуры с противоположным доминирующей моде направлением вращения можно заметить, наблюдая за эволюцией вихревых структур под куполом БТА путём численного моделирования с данными измерений 2016 г. На рис. 15 изображено горизонтальное сечение поля вертикальной компоненты завихренности в момент времени моделирования, предшествующий моменту картины движения на рис. 12. Как видно из рис. 15, под куполом ещё присутствуют оба конкурирующих вихря с вертикальными осями противоположных направлений вращения: ближе к центру рисунка наблюдается доминирующий вихрь с вращением по часовой стрелке при виде сверху, в то время как вихрь с обратным направлением вращения, теряя энергию, вытесняется на периферию (выше и правее на рисунке). На рис. 12 второй вихрь уже отсутствует.

Таким образом, результаты решения краевой задачи с граничными условиями из экспериментально измеренных данных подтверждают существование в воздухе под куполом БТА когерентной структуры и согласуются с результатами экспериментов 2016 г.

Заключение

В результате исследований в 2012 и 2016 гг. получены следующие основные результаты:

1. Общий уровень зарегистрированной интенсивности турбулентности в ночное наблюдательное время на площадке БТА в среднем низок (пониженные значения C_n^2), что обеспечивает хорошее качество астрономических изображений в наблюдениях на БТА.

2. Установлено присутствие над территорией САО когерентной турбулентности, в которой улучшается качество изображений телескопов.

3. Выяснено влияние типа подстилающей поверхности и направления скорости ветра на режим возникновения когерентной турбулентности в районе БТА. Причиной ее появления являются неравномерность нагрева поверхности и имеющие протяженность поперек Кавказского хребта ущелья, создающие «русло» для воздушных масс.

4. Проведено исследование распределения скоростей движений воздуха в объеме подкупольного пространства БТА и восстановлена экспериментальная картина воздушных подкупольных потоков. Выявлено присутствие вихревой когерентной структуры, возникающей вследствие градиента температуры в 2–3 градуса по высоте.

5. При закрытом куполе зарегистрирована интенсивность турбулентности, сравнимая с наружной. Установлено наличие "шахматной структуры" распределения параметров турбулентности под куполом.

6. Результаты численного моделирования структуры турбулентных движений воздушных масс под куполом БТА с использованием экспериментальных данных подтверждают зарегистрированную в эксперименте картину движений воздуха в подкупольном пространстве – вихревой структуры с вертикальной осью возникновение вращения. Причинами её возникновения являются температурные градиенты подкупольных поверхностей, обусловленные неравномерностью их нагрева, в то время как её форма и положение оси вращения совместно определяются геометрией подкупольного пространства И местоположением нагрева поверхностей.

7. Численное решение краевых задач с граничными и начальными условиями из экспериментальных данных позволяет восстановить распределение параметров турбулентности на рабочих участках подкупольного помещения, а также выполнить анализ влияния форм купольных конструкций, заполнения подкупольного пространства сложной геометрии, конструктивных особенностей самих астрономических телескопов, температурных режимов оптических элементов телескопа и подкупольного пространства (в том числе учесть суточный и сезонный ход температур) на качество формируемых телескопом изображений. В совокупности это делает возможным тестирование в стационарных условиях оптических характеристик как уже действующих, так и проектируемых телескопов, включая минимизацию влияния внешней и подкупольной турбулентности.

Литература

- 1. Панчук В.Е., Афанасьев В.Л. Астроклимат Северного Кавказа мифы и реальность // Астрофизический бюллетень. 2011. Т. 66, № 2. С. 253-274.
- 2. *Носов В.В., Лукин В.П., Носов Е.В., Торгаев А.В.* Оптические свойства турбулентности в горном пограничном слое атмосферы. Монография. Новосибирск: Изд-во СО РАН, 2016. 153 с.
- 3. *Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V.* Causes of non-Kolmogorov turbulence in the atmosphere // Applied Optics. 2016. V. 55, No. 12. P. B163-B168.
- 4. *Носов В.В., Лукин В.П., Носов Е.В., Торгаев А.В.* Структура турбулентности на специализированных оптических трассах в астрономических телескопах // Известия вузов. Физика. 2016. Т. 59, № 12/2. С. 134-137.
- 5. *Носов В.В., Лукин В.П., Носов Е.В., Торгаев А.В.* Дрожание астрономических изображений в когерентной турбулентности // Труды XXV Всероссийской научной конференции с международным участием «Распространение радиоволн», посвященной 80-летию отечественных ионосферных исследований. Т. 2. Томск. 2016. С. 35-38.
- 6. *Носов В.В., Лукин В.П., Носов Е.В., Торгаев А.В.* Структура турбулентности в обсерваториях юга Сибири // Материалы IV Всероссийской научной конференции «Проблемы военно-прикладной геофизики и контроля состояния природной среды», под ред. Пенькова. С-Пб.: ВКА имени А.Ф. Можайского. 2016. С. 272-275.
- 7. Stull R.B. An Introduction to Boundary Layer Meteorology. Kluwer academic publishers, 1988. 670 p.
- 8. *Google Earth* V.7.1.8.3036 (17.01.2017). Нижний Архыз. Кавказ. 43°39'54.33"С, 41°15'20.85"В, обзор с высоты 13.75 км. DigitalGlobe 2016.
- 9. Носов В.В., Лукин В.П., Носов Е.В., Торгаев А.В. Экспериментальные исследования астроклимата в

Специальной астрофизической обсерватории РАН // Актуальные проблемы радиофизики 2017. Сборник статей VII Международной научно-практической конференции, – Томск: STT, 2017. С. 151-155.

- 10. Большой Азимутальный телескоп (БТА). Техническое описание (Книга-1). ЛОМО "Телескоп, труба телескопа". 77с. URL: <u>http://w0.sao.ru/hq/sekbta/Tex_doc/Book1_view.pdf</u> (дата обращения 15.07.2016).
- 11. Носов В.В., Лукин В.П., Носов Е.В., Торгаев А.В. Когерентные структуры в подкупольном пространстве Большого телескопа азимутального. Численные решения // Актуальные проблемы радиофизики 2017. Сборник статей VII Международной научно-практической конференции, Томск: STT, 2017. С. 147-150.
- 12. *Носов В.В., Лукин В.П., Носов Е.В., Торгаев А.В.* Моделирование когерентных структур (топологических солитонов) в закрытых помещениях путём численного решения уравнений гидродинамики // Оптика атмосферы и океана. 2015. Т.28, № 2. С. 120-133.
- 13. *Носов В.В., Лукин В.П., Носов Е.В., Торгаев А.В.* Структура турбулентных движений воздуха в шахте главного зеркала Сибирской лидарной станции ИОА СО РАН. Эксперимент и численное моделирование // Оптика атмосферы и океана. 2016. Т. 29, № 11. С. 905-910.
- 14. Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V. Turbulence and heat exchange inside the dome room of lidar station. Experiment and simulation // Journal of Physics. 2016. V. 754, No. 2. P. 134-137.
- 15. *Popinet S.* The Gerris Flow Solver. A free, open source, general-purpose fluid mechanics code. 2001–2015. URL: http://gfs.sf.net.

RESEARCHES OF THE ASTROCLIMATE IN THE SPECIAL ASTROPHYSICAL OBSERVATORY OF RAS

V.V. Nosov¹, V.P. Lukin¹, E.V. Nosov¹, A.V. Torgaev¹, V.L. Afanas 'ev², Yu. Yu. Balega², V.V. Vlasyuk², V.E. Panchuk², G.V. Yakopov² ¹V.E. Zuev Institute of Atmospheric Optics SB RAS, nosov@iao.ru ² Special Astrophysical Observatory RAS

The results of the astroclimate characteristics measurements in Special Astrophysical Observatory of RAS (SAO, North Caucasus) in 2012 and 2016 are presented. The experimental results are obtained from long-term observation series of the day and night astroclimate in SAO. It was found over SAO territory the presence of non-Kolmogorov coherent turbulence in which the quality of telescope images is improve. The influence of an underlying surface type and a wind speed direction on the formation mode of coherent turbulence is explained. It was found that the causes for coherent turbulence formation are the mountainous terrain and the uneven heating of underlying surface. The airflows velocities distribution inside the dome room of the Big Telescope Alt-azimuth (BTA) had been experimentally researched. Numerical simulation of the air mass motions inside the BTA dome room had been performed to analyze the influence of a temperature regime and a form of constructions. The solutions of the boundary value problem confirm the existence of the experimentally registered vortex structure with a vertical rotation axis. The causes for its formation are the temperature gradients of the dome surfaces.

Keywords: telescope, astroclimate, turbulence, coherent structure, hydrodynamics equations